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[i] It was suggestedin a recent statistical correlation
analysis that predictability of monthly-seasonal
precipitationcouldbe improvedby usingcoupledsingular
valuedecomposition(SVD) pattemsbetweensoil moisture
and precipitation instead of their values at individual
locations.This studyprovidespredictiveevidencefor this
suggestionby comparingskills of two statisticalprediction
models based on the coupled SVD patterns and local
relationships.The data used for model developmentand
validation are obtained from a simulation over EastAsia
with a regional climate model. The results show a much
improvedskill with thepredictionmodelusingthecoupled
SVD pattems.The seasonalpredictionskill is higher than
themonthly one. Themost remarkablecontribution of soil
moistureto theprediction skill is found in warm seasons,
opposite to that of sea surface temperature. INDEX
TERMS: 1854 Hydrology: Precipitation(3354); 1866 Hydrology:
Soil moisture; 1869 Hydrology: Stochastic processes;3322
Meteorology and Atmospheric Dynamics: Land/atmosphere
interactions. Citation: Liu, Y., Predictionof monthly-seasonal
precipitationusing coupledSVD patternshetweensoil moisture
and subsequentprecipitation,Geophys.Res.Lett., 30(15), 1827,
doi: 10.1029/2003GL017709, 2003.

1. introduction

[2] With thecapacityto retainanomaloussignalsover a
long period [Delworth andManabe,1988; Vinnikov et al.,
1996], soil moisture cancontributeto long-termvariability
of the surfacetemperatureandprecipitationby passingits
relativelyslowanomaloussignalsto the atmosphere.Obser-
vationalandmodelingstudieshaveindicatedcloserelation-
shipsof initial soil moistureconditionswith anomaliesin
subsequentmonthly and seasonalsurfacetemperatureand
precipitation [e.g.,Huanget al., 1996;Eltahir, 19981.Thus,
it is possibleto improvepredictabilityof long-termvariabil-
ity of the two atmosphericvariablesby usingsoil moisture.

[3] Karl [1986] illustratedthegreatvalueofsoil moisture
to monthly andseasonalobjective forecastsof the surface
temperature.However, it is difficult to determinesoil
moisture’s role in improving predictability of long-term
precipitation. Precipitation is controlled by large-scaleat-
mosphericcirculations, whose long-term variability is in
turn relatedto other factorssuchas seasurfacetemperature
(SST), and by local land-atmosphericinteractions. The
atmosphericcirculationsplay a predominantrole in most
cases,while soil moisturebecomesimportantonly under
certain circumstances.Therefore, identification of such
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circumstancesusing both dynamic [e.g., Koster et al.,
2000] and statisticaltechniques[e.g., Wangand Kumar,
1998] is of essentialimportancefor demonstratingand
developing a capacity in making long-term precipitation
predictionusingsoil moisture.

[4] In a recent study concerningthe aboveissue [Liu,
2002], the coupled patterns betweensoil moisture and
precipitationwereidentified usingsingularvaluedecompo-
sition (SVD) [Bretherton et al., 1992; Ting and Wang,
1997]. It was indicatedthat the correlationwith soil mois-
tureprecedingprecipitationis muchmoresignificant for the
SVD expansionseriesthan original dataseries,suggesting
that predictabilityof monthly-seasonalprecipitationcould
be improved by using soil moisture in the form of its
coupledSVD patternswith precipitation.The presentstudy
providespredictive evidencefor this suggestionby com-
paringskills of statisticalforecastsusingSVD patternsand
local relationships.

2. Method
[5] Prediction modelsare developedfor both the SVD

pattern(SVD model) and local relationship(local model).
The SVD model is derived from a linear regressionrela-
tionship betweensoil moisture [u(x, t)] and precipitation
[v(x, t + n)] with applicationof a lag SVD analysis,wherex
and are spaceand time indices, respectively,and n is a
periodof time (seetheAppendixA for thederivation).The
precipitation series for the SVD analysis lags the soil
moisture series by one monthlseason(i.e., n = 1). The
resulting SVD patternsthereforerepresentspatial relation-
shipsof soil moisturewith subsequentprecipitation.In the
predictionmodel,precipitationof a comingmonth/seasonis
determinedmainly by the SVD expansioncoefficientsof
soil moistureof the currentmonth/season,andSVD spatial
patternsof precipitation.

[6] The local model is composedof a set of linear
regressionbetweensoil moisture andprecipitationat indi-
vidual locations,v(x, t + n) = D(x)u(x, t), whereu andv are
normalizedand D is the regressioncoefficient. The local
model has two major differencesfrom the SVD model: it
hasa separateregressionrelationshipateachlocationx, and
its regressioncoefficientat a location is obtainedindepen-
dent of soil moisture andprecipitationat otherlocations.

[7] Themethodto build the SVD model is similar to that
using canonicalcorrelationanalysis (CCA) [e.g., Barnett
andPreisendorfer, 1987].Mo [2002] combinedCCA with
an assembletechniqueto predict U.S. rainfall with soil
moisture andotherpredictors.Major featuresare common
betweenSVD andCCA. SVD is adoptedmainly consider-
ing that SVD is favoredwhena predictoranda predictand
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Figure 1. Skill of seasonalprecipitationpredictionwith SVD model. Panels(a d) representwinter throughfall. The
contourinterval is 10 and the unit is %. The areaswith skill above50% are shaded.

participating in eachpatternlinkage are similar to those
found in the individualdata set empiricalorthogonalfunc-
tion (BOF) patterns[Barnston,1994].

[s] A prediction with the SVD model is madein the
following steps: (1) to constrnct a validation data set
Uvalid(X, t) and v~0,~d(x, t + n) by extractingdataof the kth
year (k = 1, 2, ..., K; K = 10 for this study) from the
original dataset u(x, t) andv(x, t), and a modelingdataset
Umodel(X, t) and Vmodet(X, t + n) from the remainingdatain
the original dataset; (2) to build the SVD model usingthe
modeling dataset; (3) to calculatethe SVD time coefficient

usinga~(t) = Uvalid(j, t)p1(j) and to predictprecipitation
j—t

of the validation periodusingequation(A7) in the Appen-
dix A; and(4) to repeattheabovesteps fork= I throughK,
which generatesK separatedatasetsfor eachof modeling,
validation, andprediction. For a specific month/seasonat
each location, Vvalid(X, t + n) and the correspondingpre-
dicted valueseach are equallydivided into normal, above
andbelow normal categories.A prediction is regardedas
correct if it has the samecategoryas VvaIid(X, t + n). The
prediction skill is measuredby the ratio of correctto total
numberof predictionmade.

[9] Becauseof the unavailability of systematicmeasure-
mentsof soil moisture,this studyusesmodeloutputdata.As
usedby Liu [2002], soil moistureandprecipitationoverEast
Asia simulatedwith the National Centerfor Atmospheric
Researchregional climate model (RegCM) [Giorgi et
al.,1993] areusedin this study. The simulationhasa domain
of 90 x 79 grid pointswith a horizontalresolutionof 60 kin,
and is integratedfor the period from January 1987 to
December1997with thefirst yearregardedasaspin-uptime.

[to] A regional climate model (RCM) like RegCM is
usually integratedover a short period up to a few years

[Liu, 2002], which makesit difficult to useits outputdata
assessingstatisticalsignificanceof prediction skill. Longer
simulationshavebeenperformedwith someglobal climate
modelscoupledwith land-surfaceprocesses[e.g.,Bonanet
al., 2002].Thesemodelscouldbeanalternatetoolto produce
soil moistureandprecipitationneededfor theSVD analysis.
A RCM hasbeenusedmainly in theconsiderationthat,with
theboundaryconditionsupdatedevery 12 hoursduring the
integrationperiodprimarily using meteorologicalobserva-
tions, it is expectedto producerelatively realistic regional
circulationpatternsandhydrologicalprocesses.

[it] A major differencein the validation method stated
abovefrom theoneusedin, e.g.,BarnettandPreisendorfer
[1987] is that,becausetheoriginal datasetfor this studyhas
a short period of 10 years, continuousmonthly/seasonal
dataare used to build modelsor to validateresults. Thus,
theserially uncorrelatedconditionrequiredby a strict cross
validationis notmet here.A significancetestdoesnotmake
muchsensefor the samereason.Thus, the resultsobtained
hereare usedonly as a criteria to judge which model (the
SVD or local model) has better skill. In addition, the
prediction modelsare built using all months/seasonsof a
year in a modeling dataset, while validation is madefor
eachmonth/seasonof a year in a validation data set to
briefly look at seasonaldependenceof the predictionskill.

3. Results and Discussion

[12] Monthly and seasonalprecipitationforecastsare
madeseparately,usingmonthly soil moistureandseasonal
soil moisture aspredictors,respectively.Four leadingSVD
patternsare used.An experimentwith the patternnumbers
from 2 to 10 indicatesthat the resultsare notsensitiveto the
numberof patterns.Figure 1 shows geographicdistribution
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Figure 2. Frequencypercentageof various skill levels of precipitationprediction. Panels(a—b) representseasonaland
monthly forecastswith theSVD model,and (c—d)the correspondingforecastswith the local model.Theseasonalvaluesin
panels(c—d) are averagesof Dec—Feb(winter), Mar—May (spring),June—Aug(summer),and Sept—Nov(fall).

andseasonaldependenceof the SVD modelpredictionskill
of seasonalprecipitation.Theareaswith a skill greaterthan
50% are shaded. This skill level, selectedarbitrarily, is
consideredremarkablydifferent from the skill level of 33%
for a randomprediction. The skill exceeds50% over two
areas.Oneis in northernChina, which coversthe western
cornerofthe regionin winter, extendseastwardin springand
summer,and retreatsin fall. The otheris in southernChina,
which is limited in thewesterncornerof the regionin winter,
and extendsnortheastwardin threeotherseasons.

[13] The skill of the local model (not shown) is much
lower than that of the SVD model. The spatiallyaveraged
skill for the seasonalprediction is 46% with the SVD
model, but only 36% with the local model. To havea more
detailedcomparison,the entire rangeof skill is divided into
LevelsI—JV (<33, 33—50, 50—67, and>67%,respectively).
The higherthe frequencypercentagefor Level I, the worse
theprediction skill. It is oppositefor Level IV. For seasonal
prediction (Figure2), the frequencypercentagesof Level I
with the SVD model are about 50 (winter) and 1 Os—20s
(other seasonsand annual average),comparedwith the
correspondingvalueswith the local model of nearly 70
and40s—50s;Thoseof Level III or IV for all seasonsexcept
winter are about20 with the SVD model, comparedwith
only about10 with the local model.

[14] For monthlyprediction, theoverall skill of the SVD
modelis alsohigherthanthat of the local model.Theannual
frequencypercentagesof Level I are 59 and72 for theSVD
and local models, respectively,while those of Level II are
36 and 25, respectively.The difference betweenthe two
modelsisthemostsignificantin summerandfall. Theskill is
lower for monthly than seasonalprediction. Its annual
averagefrequencypercentagewith the SVD model is twice
asmuchas that of seasonalpredictionforLevel I, while only
abouthalf of that of seasonalpredictionfor Level III or IV.

[ts] Basedon the results for the case of this study, the
predictability of monthly and seasonalprecipitation is
indeed improvedby usingthe coupledSVD patternsof soil

moisture and subsequentprecipitation, which therefore
supportsthe suggestionmadein Liu [2002]. As pointed
out by Barnston[1994], precipitationat a given location is
determinedby the combinedeffectsof systematicrelation-
ships,which mostly are of largespatial scale,and identifi-
cation of its patternsas wholes canenhancepredictiveskill
at individual locations.

[16] The seasonaldependenceof the skill of precipitation
predictionusingsoil moistureis oppositeto that usingSST,
whosecontributionto prediction skill of long-termprecip-
itation was found profound in winter. [Barnston, 1994].
Becauseof little water exchangeon the land surface and
weaker land-atmosphericinteractions, the impact of soil
moistureon precipitationvariability is small in winter. The
EastAsian monsoonmay also havean adverseimpact on
the prediction skill. The skill is low in northern China
during the cool seasonsandsoutheasternChina during the
warm seasons,where the winter and summer monsoon
circulationsprevail, respectively.

[17] The typical length of timescaleof soil moisture
variability is about 2—3 months [Vinnikov et al., 1996]
and is longer in an interactive land-atmosphericsystem
[Liu and Avissar, 1999], suggestingthat the role of soil
moisturein precipitationvariability may bemore important
at seasonalthan monthly scale. In fact, the correlation
coefficientsof thefour leadingSVD expansionserieswith
soil moisture precedingprecipitation are 0.765, 0.835,
0.735, and 0.779 for the seasonaldata series, compared
with 0.658, 0.777, 0.574, and 0.653for the monthly data
series. This may explain the higher prediction skill for
seasonalthan monthlyprecipitation.

AppendixA: SVD PredictionModel
[18] A regressionequation is built to predict v(t

[v(x, t ±n)] with u(t) = [u(x,t)] (both normalized),
± n) =
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wherex = 1, 2, ..., M with M being the numberof space
locations;t = 1, 2 N(= N

0 — n) with N0 andn beingthe
length of the original data set and a period of time (one
month/seasonfor this study), respectively.Determining the
coefficientmatrix D usingthe leastsquaresdapproximation
(LSA), we have,

N N

D~7u(t)u(t7= ~ v(t + n)u(t)T
r=I t=1

Applying SVD [Brethertonet al., 1992] to u(t) andv(t ±

M

u(t) = Zak(tPk

M

v(t±n)=~bk(t+n)qk
k= 1

wherePk = [pk(x)] and q,,, = [qk(x)] are spatial patterns,
andak(t) at~l bk(i + n) temporalcoefficients.Applying the

propertiesZaj(t)bAt +n) = Q~ij an~~ = 6~,, where u
is singulart~

4tlue,anddevotinga~= Za7(t),we have,

M M

v(t+n) = ~a~ai(t)q/~a

An empirical factor f, is adopted to approximatethe
summationusingM

1 (<Al) leadingpatterns,

M

v(t+n) = ~fniai(t)qt/~a~
j=t

and applying LSA again, we have the final form of the
predictionmodel,

v(t + t) = ~ a~a~(t)q~/o~]
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